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I d i M d l d i iIntroduction Model descriptionp

We present a comparative analysis of different sediment transport formulations applied to dam‐ Iber is a free shallow water model which solves the 2D depth‐averaged shallow water equationsp p y p pp
break flows over mobile beds The formulations analyzed include the formulas of Meyer‐Peter‐ coupled to a turbulence module and a sediment transport module. The model is freely distributedbreak flows over mobile beds. The formulations analyzed include the formulas of Meyer Peter
Müller (1948) Wong Parker (2003) Einstein Brown (1950) van Rijn (1984) Engelund Hansen (1967)

coupled to a turbulence module and a sediment transport module. The model is freely distributed
via www iberaula esMüller (1948), Wong‐Parker (2003), Einstein‐Brown (1950), van Rijn (1984), Engelund‐Hansen (1967),

Y li (1973) d l t t f l ith d h ffi i t

via www.iberaula.es

h d d l l h d b h d d d b dYalin (1973) and a general transport formula with ad‐hoc coefficients. The sediment transport module solves the 2D Exner equation considering both suspended and bed 

Numerical results in two different test cases are presented. The first one consists in an instantaneous load transport. In the test cases analyzed in this work, only bed load transport was consideredu e ca esu ts t o d e e t test cases a e p ese ted. e st o e co s sts a sta ta eous
dam‐break flow over a sand bed presented in Soares‐Frazao et al (2012) The second one

p y , y p

dam break flow over a sand bed, presented in Soares Frazao et al. (2012). The second one
corresponds to the experimental studies performed at the Engineering Faculty of the UNAM HYDRODYNAMICScorresponds to the experimental studies performed at the Engineering Faculty of the UNAM
(F M il l (2010)) d i i h i f l i d dik b i

HYDRODYNAMICS
2D Shallow Water Equations qqZ (Fuentes‐Mariles et al. (2010)) and consists in the erosion of a volcanic sand dike by an overtopping 2D Shallow Water Equations
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(Vx, Vy, h)  p
t x y  

All the formulations have been implemented in the numerical model Iber (Bladé et al (2014)) whichAll the formulations have been implemented in the numerical model Iber (Bladé et al. (2014)), which
solves the depth averaged shallow water equations coupled to the Exner equation to evaluate thesolves the depth‐averaged shallow water equations coupled to the Exner equation to evaluate the
b d l ib l Ebed evolution. www.iberaula.es E D

SEDIMENT TRANSPORT TURBULENCE
2D Exner equation mixing length, k-ε bZ

bq

First test case Dam break over erodible bed (Qs,susp, Qs,bed + Zbed) (νisct, kt, ε)
sbq

First test case. Dam break over erodible bed
The first one consists in an instantaneous dam break flow over a sand bed presented in Soares

Second test case Sand dyke failure by overtopping flow
The first one consists in an instantaneous dam‐break flow over a sand bed, presented in Soares‐
F l (2012) Th b d d h d d f ll d d i h di f Second test case. Sand dyke failure by overtopping flowFrazao et al. (2012). The bed downstream the dam was made of a well‐sorted sand with diameter of

Laboratory experiments on the failure of a small scale sand dyke were conducted at the UNAM1.61mm, porosity of 0.42 and density of 2.63 kg/m3. The sand layer was completely saturated at the Laboratory experiments on the failure of a small scale sand dyke were conducted at the UNAM
Institute of Engineering (México) The laboratory model was built in a 5 66 x 0 60 m flume with nobeginning of the experiment, and its thickness was 8.55 cm. Upstream water level was 47 cm, while Institute of Engineering (México). The laboratory model was built in a 5.66 x 0.60 m flume with no
b d l h d d f ll d d i h di f 0 2 i f 0 3 3 d

beginning of the experiment, and its thickness was 8.55 cm. Upstream water level was 47 cm, while
downstream the water depth was zero bed slope. The dam was made of a well‐sorted sand with diameter of 0.25mm, porosity of 0.313 anddownstream the water depth was zero.

h fi i l h i b il f 1 9 0 d il l l f i bl i A l density of 2.4 kg/m3.The finite volume mesh is built from 17970 quadrilateral elements of variable size. Average element y g
size downstream the dam is 33.36 cm2, and near the upstream contour 83.55 cm2.p

Model performance is analyzed in terms of the bed elevation at the end of the experiment. The best
agreement between experimental and numerical data is obtained with Yalin and Meyer‐Peter‐Mullerg p y
formulas both of them give very similar results The formulas of van Rijn and Wong‐Parkerformulas, both of them give very similar results. The formulas of van Rijn and Wong Parker
underestimate slightly the sediment transport capacity and mobilize less sediment although theunderestimate slightly the sediment transport capacity and mobilize less sediment, although the

i ith th i t l lt i till d Ei t i B d i ll E l dcomparison with the experimental results is still good. Einstein‐Brown and specially Engelund‐
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